LSTM and variants

Recap: vanishing gradients in RNNs

RNN equations

$$\mathbf{s}_t = \tanh(U \cdot \mathbf{x}_t + W \cdot \mathbf{s}_{t-1})$$

The RNN gradient of the memory parameters

$$\frac{\partial \mathcal{L}_t}{\partial \mathbf{W}} = \sum_{i=0}^t \frac{\partial \mathcal{L}_t}{\partial y_t} \frac{\partial y_t}{\partial \mathbf{s}_t} \left(\prod_{j=i+1}^t \frac{\partial \mathbf{s}_j}{\partial \mathbf{s}_{j-1}} \right) \frac{\partial \mathbf{s}_i}{\partial \mathbf{W}}$$

• Chain multiplications: $\frac{\partial s_j}{\partial s_{j-1}} < 1 \rightarrow \text{vanishing gradients}$

RNN → LSTM: Key idea

$$y_t = \operatorname{softmax}(V \cdot s_t)$$

$$s_t = \tanh(U \cdot x_t + W \cdot s_{t-1})$$

- Setting $\frac{\partial s_j}{\partial s_{j-1}} = 1$ \rightarrow no vanishing and exploding gradients
- Remove immediate nonlinear relation between s_t and s_{t-1}
 - Replace tanh between s_t and s_{t-1} with identity
- Also, avoid continuous overwriting of state
 - Modulate the importance of new input by a gate
 - Modulate the importance of new output by a gate
 - Modulate the importance of past memories by a gate

An LSTM, graphically

LSTM speaking

How important is my input?

LSTM speaking

How important is my past state?

LSTM speaking

What could be a relevant new memory?

LSTM speaking

Ok, let's compute my new state

LSTM speaking

Is my new state useful for output? Check first how important is to give an output.

LSTM speaking

What is my new output?

LSTM insights

- Comparing the state equations between RNN and LSTM
 - RNN: $s_t = \tanh(U \cdot x_t + W \cdot s_{t-1})$
 - LSTM: $s_t = s_{t-1} \odot f_t + g_t \odot i_t$, $m_t = \tanh(s_t) \odot o_t$
- \circ The LSTM also has indirect nonlinear relation between s_t and s_{t-1} via m_t
 - There is also direct linear relation → Strong gradients encouraged
- Use sigmoids for gating/squashing \rightarrow (0,1) values
 - Use tanh as module's recurrence nonlinearity, instead

Nice tutorial: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Unrolling the LSTMs

- Just the same like for RNNs
- The internal equations are more complicated but the idea is the same
- \circ Because of linear relation between s_t and s_{t-1} vanishing gradients mitigated
 - LSTM captures short-term, as well as long-term correlations

LSTM variants

- LSTM with peephole connections
- o Gates have access also to the previous cell states c_{t-1} (not only memories)
- Bi-directional recurrent networks
- Gated Recurrent Units (GRU)
- Phased LSTMs
- Skip LSTMs
- And many more ...